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TECHNICAL NOTE D-379

SUBSONIC KERNEL-FUNCTION FLUTTER ANALYSIS OF A

HIGHLY TAPERED TAIL SURFACE AND COMPARTSON
WITH EXPERIMENTAL RESULTS

By Gerald D. Walberg
SUMMARY

A flutter analysis employing the kernel function for three-
dimensional, subsonic, compressible flow 1is applied to a flutter-tested
tail surface which has an aspect ratio of 3.5, a taper ratio of 0.15,
and a leading-edge sweep of 30°. Theoretical and experimental results
are compared at Mach numbers from O0.75 to 0.98. Good agreement between
theoretical and experimental flutter dynamic pressures and frequencies
is achieved at Mach numbers to 0.92. At Mach numbers from 0.92 to 0.98,
however, a second solution to the flutter determinant results in a
spurious theoretical flutter boundary which is at a much lower dynamic
pressure and at a much higher frequency than the experimental boundary.

INTRODUCTION

In order to predict successfully the flutter characteristics of a
low-aspect-ratio, plate-like 1lifting surface, a flutter analysis must
employ accurate, three-dimensional, aerodynamic forces. Because of the
prominent role of flutter in modern airplane design, the development of
practical procedures for calculating three-dimensional, unsteady, aero-
dynamic forces is a problem of increasing importance.

A promising approach to this problem involves direct consideration
of the integral equation relating the 1ift and downwash distributions
of oscillating finite wings. Basic to the solutlon of this equation is
the evaluation of its kernel, a function which is essentially an aero-
dynamic influence coefficlent representing the downwash at some point
on a lifting surface due to a unit aerodynamic load at any other point
on the surface. In reference 1, the kernel function for oscillating
finite wings in compressible subsonic flow was reduced to a form which
could be conveniently evaluated. By using this form of the kernel, a
subsonic lifting-surface method for calculating the forces on a har-
monically oscillating wing of arbitrary plan form and deflection mode



was developed in reference 2. This method employed a systematic numeri-
cal solution of the integral equation and was suitable for programing
in high-speed computing machines.

In reference 3, the lifting-surface *method of reference 2 was
employed in a modal-type flutter analysis. This flutter analysis appears
to be well suited to the study of thin low-aspect-ratio surfaces at sub-
sonic speeds, since it 1s capable of accounting for the effects of com-
pressibility, finite span, and chordwise deformation. Few comparisons
between flutter boundaries, calculated by this analysis, and experimental
flutter boundaries are presently available. The purpose of the present
paper is to present such a comparison.

In the present investigation a tail surface having an aspect ratio
of 3.5 and a taper ratio of 0.15 was flutter tested at Mach numbers
from 0.75 to 1.06. This model had a leading-edge sweep of 30° and a
3.5-percent-thick biconvex section. The natural vibration modes of the
model involved significant chordwise deformation. Theoretical flutter
boundaries were calculated, for Mach numbers from O to 0.98, by using
the analysis of reference 3 (with minor modifications). In the analysis,
the flutter mode was approximated by & linear combination of the first
three experimentally measured natural vibration modes of the model.
Theoretical and experimental flutter boundaries are compared herein.

SYMBOLS
A aspect ratio
Ap panel aspect ratio
Aij generalized aerodynamic force £§7 \[ywhiLJ das
S
bo streamwise root semichord, ft
by streamwise tip semichord, ft
f frequency of vibration, cps
fi frequency of the ith natural vibration mode, cps

g structural damping coefficient
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h(x,y,t)

i,J

m(x,y)

X)Y)Z

instantaneous deflection of point on tail surface in flutter
mode, ft

displacement of point x,y in the ith mode of vibration normal-

jzed with respect to the maximum displacement in that mode
hi (x,¥)

imaginary part of complex unknown &
indices denoting a particular natural vibration mode

reduced frequency, bgw/V

exposed semispan, ft

dimensionless series expression for aerodynamic load distri-
bution due to motion in jth vibration mode

Mach number

generalized mass associated with ith mode of vibration

¥[7“m(x,y)h12ds, slugs
S

local mass per unit area at point x,y, slugs/sq ft
dynamic pressure, lb/sq ft
generalized force associated with ith mode of vibration, lb

generalized coordinate in ith mode of vibration, ﬁieiwt, ft

complex amplitude of generalized coordinate in ith mode, ft

real part of complex unknown
surface area of tail, sq ft

time, sec

velocity of airstream, ft/sec
cartesian coordinates (see fig. 4)

angular chordwise variable (see fig. 5)



ME leading-edge sweep angle, deg

A taper ratio i
%p panel taper ratio

) panel mass ratio, ratio of exposed panel mass to mass of a

truncated cone of air having lower base diameter 2bg,,
upper base diameter 2by, and height 1

Mi generalized mass in ith mode of vibration referred to a den-
sity parameter, hﬁpl2bo (see eq. (11))
o density of airstream, slugs/cu ft
. wi\2 :
Q complex unknown of flutter determinant, =17(1 + ig)
w
w angular frequency, 2=xf, radians/sec
Wy angular frequency of ith vibration mode, 2nfy, radians/sec -

Dots over symbol indicate derivatives with respect to time.

EXPERIMENTAL INVESTIGATION

Model Geometry and Construction

The experimental data, presented herein, were obtained from one of
a series of all-movable, horizontal stabilizers which were flutter tested
in the Langley 8-foot transonic pressure tunnel. The model used for the
present investigation had an aspect ratio of 3.5, a taper ratio of 0.15,
a leading-edge sweep of 300, and a 3.5-percent-thick biconvex section.
Structural and geometric details of the model are shown in table I and
in figure 1,

As shown in figure 1, the model was built up of 0,010-inch-thick
duralumin laminations., These laminations were covered with balsa which
was shaped to the desired external contour. The outer surface of the
model was covered with a thin plastic film. Incorporated in the model
center section were two ball-bearing trunnions which located the hinge
line at 40 percent of the mean aerodynamic chord. For the present

investigation, however, the actuator rib (see fig. 1) was clamped to .
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prevent its rotation about the hinge line. This clamping of the center
section served to increase the amount of chordwise deformation involved
in the natural vibration modes of the model.

Physical Properties of Model

The natural frequencies of vibration were determined by exciting
the model with two electromagnetic shakers located fore and aft near
the root chord. During these vibration tests, the model was mounted
in the wind tunnel exactly as it would be mounted for the flutter tests
which were to follow. Time-exposure photographs were employed to deter-
mine the natural vibration modes of the model. These photographs were
taken with a camera which was mounted outboard of the model tip and
directed spanwise toward the root. The upper surface of one panel of
the model was painted flat black and had thin, white, chordwise lines
located at every one-tenth of the exposed semispan. With the model
moving in one of its natural modes, a time-exposure photograph was
taken. In the photograph, the chordwise white lines appeared as bands,
the thickness of these bands being indicative of the amplitude of
motion. The first three natural modes and their frequencies are pre-
sented in figure 3.

Instrumentation

The model was instrumented with electrical strain gages. Two
groups of gages were used on each panel of the model, The first group,
which consisted of bending and torsion gages bonded to both the upper
and lower panel surface, was located near the 50-percent-chord line and
the panel root. The second group consisted of torsion gages bonded to
the upper panel surface and was located near the 50-percent-chord line
at 70 percent of the exposed semispan. During the tests, a recording
oscillograph was used to record the signals from the various gages.
These records were used to determine flutter frequencles and the onset
of flutter. The strain-gage signals were also fed into a cathode-ray
oscilloscope in such a way that a Lissajous pattern indicated the start
of flutter. At each test point, the tunnel Mach number, stagnation
temperature, and stagnation pressure were recorded by a punchcard
readout system.

Tunnel and Support System
The' tests were conducted in the Langley 8-foot transonic pressure

tunnel which 1s a single-return tunnel having a rectangular, slotted
throat. 1In this tunnel, stagnation pressure and Mach number are



independently variable. Some details of the tunnel test section have
been presented in reference 4,

The model was mounted at an angle of attack of 0° on a long,
5.5-inch-diameter cylindrical fuselage which extended into the subsonic
region upstream of the test section. The fuselage was considered a
rigid mount, since the fuselage mass was many times greater than the
model mass. The measured fundamental vibration frequency of the support
system was k.3 cycles per second.

Flutter Tests

Experimental zero-lift flutter points were obtained at Mach numbers
from 0.75 to 1.06. The procedure used in obtalning flutter at a given
Mach number was to increase stagnation pressure gradually until flutter
was obtained. After flutter was obtained, tunnel conditions were held
constant momentarily and then Mach number and stagnation pressure were
reduced as rapidly as possible in an effort to save the model from
destruction. All flutter points reported herein were obtained from
the same model. Experimental results are presented in table II.

ANALYTICAL. INVESTIGATION

This section presents the method of flutter analysis used in the
present investigation. Because of the similarity between the present
analysis and that of reference 3, the method is described only in gen-
eral terms.

In the present analysis, the fuselage side was assumed to act as
a reflection plane. Hence, the plan form which was analyzed is that
plan form which results if, in figure 1, the center section is removed
and the panels are joined along thelr respective root chords. This
resultant plan form and the coordinate system used in the analysis are
presented in figure k.

Equations of Motion
In the present analysis, the flutter mode 1s approximated by a
linear combination of the model's first three natural (orthogonal)
vibration modes; that is,

n(x,y,t) = q (t)hy(x,5) + ap(t)ha(x,y) + a5(t)ns(x,¥) (1)

i e
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where qi(t) = iieiwt is the generalized coordinate for the ith degree

of freedom and hi(X,y) is the assoclated normalized natural mode shape.

If the Lagrangian formulation 1s applied and the procedure of ref-
erence 3 is followed, the resulting equation of motion for the ith
degree of freedom is of the form

Mgy + 03?Myq = @ (2)

where Mj and Q; are, respectively, the generalized mass and the
generalized aerodynamic force for the ith degree of freedom. If the
definition qj = qieiwt is employed, equation (2) may be written in
the form

A2
1-(%) Miqi+;lEQi=O (3)

which corresponds to equation (6) of reference 3.

Generalized Mass

The generalized mass for the ith degree of freedom is defined as

M = ﬂm(x,y)hieds (1)
S

where m(X,y) is the distribution of wing mass per unit area, and hy

is the ith normalized, natural mode shape, In the present investiga-
tion, both m(x,y) and hy were determined experimentally, as '

described in the section entitled "Physical Properties of Model." 1In
order to evaluate Mj, the wing was divided into 27 mass elements, and

the displacement of the center of mass of each element hi(k) was

taken from the appropriate mode shape. The generalized mass for the
ith mode was then computed as

27

Mj = Z m(k)[hi(kﬂg (5)

k=1
where m(k) is the mass of the kth element.



Generalized Aerodynamic Force

As shown in reference 3, the generalized aerodynamic force may be
expressed as

1 brpVey /- = =
S Q=5 qufhiLl as + qgﬂhiLg ds + <15ff111L3 ds (6)
* o s 5

S

In equation (6), Ly 1s a series expression for the aerodynamic load

distribution due to motion in the jth natural mode. Basically, two
steps are required in the calculation of Q1. The first step is the

determination of Lj and the second step is the evaluation of the

surface integrals \[]“hiLj dS. Reference 2 describes a collocation
S

procedure which is used to determine Lj. This procedure consists of

representing the aerodynamic surface loading by a series expression that
automatically satisfies the conditions of load at the wing edges. The
downwash angles at various control points on the surface are then used
as boundary conditions to determine the values of the arbitrary coeffi-
cients in the assumed series. The locations of the control points used
in the present investigation are shown in figure 5. After Lj is deter-

mined, the evaluation of Q; 1is simply a matter of performing the surface

integrations k[]“hiLj dS. 1In the present investigation, this inte-
5

gration was performed numerically by using an 1l-point Simpson's Rule

in the spanwise direction and a 9-point Simpson's Rule in the chordwise

direction. The numerical integration lattice is shown in figure 5.
Flutter Determinant

By substituting equation (6) into equation (3), the ith equation
of motion may be written in the form

2 2
ARE Lapvel = =
1_(3) qi+__2_éqlﬂhileS+q2[/-hiL2dS+qjﬂhizsds=o
M, by~ S S

S

(1)
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or alternatively,

=4 I - - -
1 - (%) j](h + é (@A11 + Gphyp + Gshys) = O (8)
ko“H1

where

=Bl_fth ds (9)

L
6
L b
5 ko = _%9 (10)
Lxp12b
1 hwp1fpg
E—T (11)

If equation (8) is written for the three degrees of freedom (nat-
ural modes) under consideration, a set of three simultaneous homogeneous
equations results. If these equations are to have a nontrivial solution,

- their coefficlent determinant must vanish,

Hence,
2
- <“_>1_> gt Ao A1z
w2 koPh1 ko1 koZhy
A 2 A A
2L 1-(%>9+_%2_ —2 -0 (12)
ko H2 2 ko"H2 ko"k2
A31 As2 1 - (ﬂ)% v 235
7 2
ko3 ko3 x Ko"H3

where the complex eigenvalue § 1s defined by

- Q= (%)2(1 + 1g) (13)
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In this definition of @, w 1is the unknown frequency and g 1is a
damping coefficient that becomes zero at the borderline condition
between damped and undamped motion.

Determination of Theoretical Flutter Boundaries

In the present investigation, theoretical flutter characteristics
were determined for Mach numbers M from O to 0.98 and mass ratios p
from 20 to 100 by the following procedure.

For each combination of M and u, the flutter determinant was
solved for a range of reduced frequencies kg. Since expansion of the

flutter determinant results in a cublc equation in the complex unknown
Q, each combination of M, u, and Kg yields three values of { which

must be examined to see whether they meet the requirements for a flutter
point. By definition,

2
Q.—.(%)(l+ig)=R+iI

therefore,

At each M, flutter characteristics were determined from plots of g
and w/wQ against l/ko in which 4 was a parameter. Flutter points

2
were taken as being those points where g =0 and (ﬁ;) > 0. As illus-

trations, curves of g and w/uQ against l/ko are presented in fig-

ures 6 and 7, respectively. The resulting flutter characteristics were
plotted as flutter boundaries of dynamic pressure g required for
flutter and flutter fregquency ratio w/wQ as functions of M with 4

as a parameter. Theoretical flutter boundaries corresponding to wind-
tunnel conditions were calculated for comparison with the experimental
flutter points.

DISCUSSION OF RESULTS

The g against l/ko and w/wg “against l/ko curves of fig-

ures 6 and 7, respectively, are presented to illustrate the behavior
of the flutter determinant roots at various Mach numbers. In the

- ON
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present investigation, the behavior of these roots was found to be simi-
lar throughout the Mach number range O <M< 0.90. Therefore, curves
are presented only for M = 0, 0.75, and 0.90. These curves show that,
for the range 0 S M £ 0.90, the only critical root is that one asso-
ciated with the second natural mode. It should be noted, however, that,
as the Mach number approaches 0.90, the third-mode root approaches the
g = 0 line.

At a Mach number of 0.92 the character of the determinant roots
has changed. At this Mach number, the first- and third-mode roots are
both critical. The first-mode root predicts flutter for the mass-ratio
range from 20 to 100 and the third-mede root predicts flutter for mass
ratios 60 to 100. From figure 6(d) it is seen that the third-mode root.
loops up over the g = 0 line and then continues on the negative side.
Hence, the third-mode root indicates flutter over a limited range of
l/ko and W, whereas the first-mode root indicates flutter for all

l/ko greater than that value for which g =0 and for 20 < u £ 100.

At Mach numbers of 0.9%, 0.96, and 0.98, the first- and third-mode
roots remain critical. The principal effect of an increase in M from
0.92 to 0.98 is that the flutter region predicted by the third-mode
root grows until, at M = 0.98, only a lower limit on l/ko is indi-

cated within the reduced-frequency range investigated.

Figure 8 presents theoretical flutter boundaries of dynamic pres-
sure q required for flutter and flutter frequency ratio w/w2 as

functions of Mach number with mass ratio as a parameter. Flgure 8 shows
that the flutter points taken from the first and second-mode roots of
the flutter determinant form smooth boundaries. These boundaries, which
are shown as solid lines in figure 8, are determined by second-mode-root
flutter points at O <M< 0.90 and by first-mode-root flutter points
at 0.90 < M £ 0.98. As mentioned previously, the third-mode roots of
the flutter determinant also yield flutter points at Mach numbers from
0.92 to 0.98. The flutter boundaries due to these points are shown, in
figure 8, as dashed lines. In figures 6 and 7 it was seen that the
third-mode roots of the flutter determinant indicated flutter over
limited ranges of reduced frequency and mass ratio at Mach numbers

from 0.92 to 0.96. Hence, at these Mach numbers an upper and lower
boundary of gq and w/mg would exist for each u. In figure 8, only

the lower boundaries are shown. The curves of figure 8 show that,
throughout the range of variables investigated, flutter g for a given
M varies with p (and hence with density). Therefore, these theoreti-
cal results do not agree with the so-called constant-q concept of
flutter, However, the veriation of g with d Dbecomes small at

high up. The effect of W on the variation of g with M 1is also

of interest. Consider the first- and second-mode-root curves. For a 4
of 20, gq decreases slowly as M goes from 0 to 0.90 and then Increases
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abruptly for M > 0.90. For u = 40, the decrease in q with increasing
M 1is greater than for i = 20, and the minimum value of q 1is reached
at M= 0.925. 1In general, figure 8 shows that, as W increases, the
decrease in g with increasing M Dbecomes more pronounced, and the
minimum value of q occurs at a higher M, These trends bear a remark-
able similarity to the trends of experimental data presented in figure 21
of reference 5.

In figure 9, the theoretical and experimental results of the present
investigation are compared. The theoretical curves of figure 9 were
obtained from calculations employing the experimental value of p for
each M. Figure 9 shows that, for M from 0.75 to 0.92, the agreement
between theory and experiment is good for both q and w/wQ. For M

from 0.92 to 0.98, however, two theoretical flutter boundaries exist.
In flutter prediction by theoretical means, the flutter solution which
yields the lowest q must be accepted at each Mach number. Hence, on
this basis, the third-mode-root boundary, which predicts a flutter fre-
quency very near the frequency of the third natural vibration mode,
must be accepted for 0.92 S M S 0.98. For this boundary the agreement
of both g and w/wE with experimental results is poor. If, however,

the third-mode root were disregarded, the agreement between theory and
experiment, especially with regard to trends, wouid be acceptable for
the entire M range for which calculations were made. There 1s, how-
ever, no reasonable basis for disregarding the third-mode-root flutter.
The operating path of the wind tunnel was such that, if this flutter
had existed physically, it would have been encountered during the
experimental investigation.

In an attempt to determine the origin of the third-mode-root flutter,
some calculations were undertaken for M = 0.9% in which various two-
degree-of-freedom subcases of the flutter determinant were examined.
When the first two natural vibration modes were considered, only the
flutter solution which gave acceptable agreement with experiment was
obtained. The third-mode-root flutter was found only when a combination
of the second and third natural modes was used, It is noted that the
frequencies of these modes are very close together; this in itself might
be expected to lead to conditions of resonance. Since no such flutter
as that indicated by the third-mode root was found experimentally, it
may be concluded that this flutter mode is sensitive to some factor not
properly accounted for in the analysis. A complete understanding of
the nature of this additional flutter solution would require a broad
survey of the many factors which might possibly influence it. Such a
survey would include considerations of various control point locations
and numerical -integration techniques, of higher structural modes, and
of structural damping.

U+ Ot
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CONCLUDING REMARKS

A flutter analysis employing the kernel function for three-
dimensional, compressible flow was applied to a flutter-tested tail
surface which had an aspect ratio of 3.5, a taper ratioc of 0.15, and
a leading-edge sweep of 30°. The flutter tests covered the Mach number
range from 0.75 to 1.06. Theoretical flutter boundaries were calculated
for Mach numbers from O to 0.98. 1In the calculations, the flutter mode
was approximated by a linear combination of the first three natural
vibration modes of the model.

Good agreement between theoretical and experimental flutter dynamic
pressures and frequencies was achieved for Mach numbers up to 0.92. At
Mach numbers from 0.92 to 0.98, a second solution to the flutter deter-
minant resulted in spurious theoretical flutter points which were at a
much lower dynamic pressure and a much higher frequency than the experi-
mental points.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., February 11, 1960.
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TABLE I

PROPERTIES OF MODEL

Aspect ratio, A o v ¢ ¢ ¢ 4 o s e e s e e e e e e s e e e e 3.5
Thickness ratio &« v ¢ « o o o o s o s ¢ s o s 2 o 5 5 o s s 0.035
Taper ratio, A « ¢« + o o o o ¢« o s 0 0 s e e e e 0 e e e . 0.15
Leading-edge sweep angle, Arp, de e 4 s e e s e s e e e e 30
Streamwise airfoil SECtiON + o « « o o s & s s s o + s o o o Biconvex
Streamwise root semichord, by, f£ « « « « v v ¢ o o o0 0.625
Exposed semispan, 1, £ . o « ¢ + o o 0 0 o o s v s 0 0 0 0 1.22
Exposed panel mass, 1D-S€CZ/Ft v o 4 o v e 4 e e s e s e e 0.055
Panel aspect Tatio, Ap « + + o v o o v e e e e e e e 1.66
Panel taper ratio, Ap « « « o o o o o 0 ¢ 0 0 0 0o e o 0.176
Natural frequencies, cps:

TIiTst MOGE « « o o o o o o o o o s o o s o o 4 4 e s osow e 40

Second TMOAE + « o o o o 5 o o & € 5 s % e e 4 e e & s = = 108

Third mode . . L] . - . . . . . . L . L ] . . - . » L] . . L . 11-7

TABLE II1

EXPERIMENTAL FLUTTER POINTS

. v o, q, f, @ w
Point| M ft/;ec lb_sec2/fth 1b/sq ft|cps rad/;ec /2 -

1 lo.750| 841.7| 0.0021k6 760 6.1 402 [0.592{4Lk.3
2 L8481 938.5| .001509 66k 57.41 360 .531163.0
3 .912|1,001.3| .001197 600 51. 325 L479179.5
L .958{1,0kk,1| .00111k 607 54,91 34k .507185.4
5 .983|1,067.0f .001232 701 56.5[ 354 522|77.2
6 |1.060{1,135.7| .00L1llk 718 56.1] 352 .519185.4
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Figure 5.- Control points and numerical integration points.
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Figure 9.- Comparison of theoretical and experimental flutter boundaries.
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